Показатели кислотно основного состояния крови

Содержание:

Понятие кислотно-основного состояния или равновесия (КОС) заключается в следующем: это довольно постоянная величина соотношения кислоты к основанию плазмы крови живого организма. Аналогичные ему названия – реакция, равновесие, равновесие кислот и щелочей. Показатель этот один из компонентов гомеостаза. Количественное определение такого равновесия исчисляется содержанием протонов, то есть концентрацией ионов водорода. Иначе это называется водородным показателем pH.

Кислотно-основное состояние (КОС) – важная характеристика крови. Оно колеблется в течение жизни, но не на критических показателях. Постоянство этой величины необходимо для полноценности метаболических процессов в организме, обеспечения нормального сохранения активности ферментов, а также интенсивности обмена веществ и его направленности.

Немного физики

Любая жидкость может быть охарактеризована как кислотная или щелочная. Зависит и определяется это содержанием в ней количества протонов (название свободных водородных ионов). Это же касается и крови. Сегодня кислотность любой жидкой среды определяется таким понятием, как водородный показатель — рН (power hydrogen — «сила водорода»). Шкала и определение рН (от 0 до 14) в 1908 г. была введена датским биохимиком и физиком Сереном Петером Лаурицем Сервисеном.

Нейтральная реакция жидкости – ее рН — равняется 7 единицам. При меньших его значениях говорят о повышении кислоты, большие значения превращают жидкость в щелочную.

Понятие о кислотно-основном состоянии организма и его постоянство поддерживается 2 составляющими – БР (буферные растворы или системы) и физиологической компенсацией за счет органов – почек, легких, печени.

Механизм

Патофизиология кислотно-основного состояния — любые ткани живого работающего организма всегда оказываются чувствительными к сдвигам pH в любую сторону. Если он превышен и реакция щелочная, тут же начинается разрушение клеток, белки сворачиваются (денатурируются), ферменты инактивируются, и организм может погибнуть.

Электролиты крови — кислоты, щелочи и соли, которые под воздействием воды распадаются на катионы и анионы. Постоянство или регуляция кислотно-основного состояния происходит за счет, как было сказано, буферных систем. Их основное предназначение – противодействие резким колебаниям содержания протонов.

Эти растворы имеют свойство держать уровень ионов водорода постоянным даже при добавлении к ним кислот или щелочей или при их разведении. Состав буфера – это смесь какой-либо слабой кислоты с ее же основанием, но с сильным анионом, то есть это кислотно-основная пара. Например, такой системой можно назвать карбонатную кислоту: Н2СО3 и NaHC03.

В крови постоянно действуют и существуют несколько основных буферных систем:

  1. Бикарбонатная (смесь Н2СО3 и НСО3) – занимает 53 % буферной емкости крови и является самой мощной.
  2. Система гемоглобин — состоит из оксигенированного гемоглобина (слабая кислота) и неоксигенированного (или дезоксигемоглобина). Это слабое основание – ННв-КНвО2) – 35 %. Оксигемоглобин в 80 раз больше отдает в среду протонов.
  3. Белковая буферная система – это, в первую очередь, альбумин крови, поэтому для внутренней среды клеток он главный. Данный буфер занимает всего 5-7 % от емкости крови. Работает он благодаря амфотерным свойствам белка. В кислой среде альбумин становится катионом, в щелочной – выступает как кислота. Такое свойство называется способностью к ионизации.
  4. Фосфатная система (дифосфат-монофосфат – NaH2РО4 и NaHPO4) – составляет 2-5 % плазмы крови.

Значение каждой буферной системы

Бикарбонатная буферная система (наиболее управляемая среди других) имеет особенно важное значение: при избытке протонов происходит реакция с ионами бикарбоната (HCO3−) и образуется Н2СО3 – угольная кислота. Это не что иное, как раствор углекислого газа в воде. Далее ее количество уменьшается за счет распада этой кислоты с образованием углекислого газа, выводимого легкими. Деятельность этого буфера имеет неразрывную связь с вентиляцией легких.

Гемоглобиновый буфер зависим от работы легких, связан с оксигенацией, то есть насыщения кислородом. Кислород потенцирует данный буфер, т. е. определяется активностью дыхательной системы.

Белковая система отвечает за нейтрализацию продуктов метаболизма.

Концентрация фосфатного буфера сосредоточена, в основном, в таком месте почек, как канальцы и внутриклеточном пространстве. Только от него зависит кислотно-основная реакция мочи — дигидрофосфат (H2PO4). А вот NaHCO3 в канальцах почек всасывается обратно.

Физиологические процессы компенсации

Значение работы почек в регуляции КОС выражено в том, что они связывают и выводят ионы водорода и возвращают в кровь ионы натрия и бикарбоната. Поэтому регуляция кислотно-основного состояния почками зависит от водно-солевого обмена. Метаболическая почечная компенсация работает медленно – компенсация наступает в течение 9-12 ч.

Что происходит в почечных канальцах: в них происходит секреция ионов водорода. Здесь они соединяются с ионами бикарбоната (NaHC03 и КНСОз). Образуется угольная кислота (Н2СО3). Она, в свою очередь, легко диссоциирует на углекислый газ и воду, при излишке которых они также выводятся легкими и почками. Одновременно высвободившиеся катионы натрия и калия эквивалентно заполняют канальцы снова, они опять участвуют в дальнейшем образовании бикарбонатов.

В результате всех этих превращений щелочность крови сохраняется. Минус только в медленности действия почек. Константа кислотно-основного состояния определяется также активной работой печени. Она окисляет большинство органических кислот, а неорганические удаляет вместе с желчью.

Лактат преобразуется в печени в гликоген (животный крахмал). Панкреатический, кишечный (щелочная реакция) и желудочный соки также участвуют в метаболической компенсации.

Кислотно-основное состояние крови человека в норме проявляет себя как слабощелочная жидкость. При этом рН артериальной крови равен 7,35-7,47, а венозной крови на 0,02 ниже. Кислота становится донором ионов водорода, основание их связывает и называется акцептором.

Легкие в поддержании постоянства КОС играют главную роль, потому что через них выделяется 95 % кислых валентностей в виде углекислоты.

В сутки выделяется легкими 15 тыс. ммоль углекислоты, а почки, к примеру, могут выделить всего 40-60 ммоль. То есть дыхание человека – это и есть работа легких в поддержании гомеостаза.

Недостаточная вентиляция легких повышает парциальное давление углекислого газа в альвеолярном воздухе и создается альвеолярная гиперкапния. Соответственно, увеличивается объем СО2 в артериальной крови и здесь также возникает уже артериальная гиперкапния. При слишком большом повышении PaCO2 или длительной гиперкапнии дыхательный центр угнетается с понижением его чувствительности к CO2.

При гипервентиляции легких картина противоположная и характеризуется она гипокапнией – альвеолярной и артериальной. Колебания углекислоты вызывает респираторные сдвиги кислотно-основного равновесия.

Легочный механизм компенсации происходит чрезвычайно быстро (коррекция изменений рН в щелочную сторону при ацидозе происходит буквально за 1-3 минуты) и является очень чувствительным. Гораздо быстрее действуют буферные системы – им нужно для компенсации всего 30 сек.

Виды нарушений

Они развиваются при многих патологических состояниях, и регуляторные механизмы в таких случаях могут не срабатывать. В зависимости от сдвига рН, могут развиться ацидоз и алкалоз. Причины смещения — дыхательные (респираторные) и метаболические (обменные) сдвиги. Соответственно, развивается алкалоз или ацидоз респираторный или метаболический. Системы регуляции кислотно-основного состояния крови стремятся скорее ликвидировать возникшие изменения, причем при респираторных нарушениях подключаются в помощь механизмы метаболической компенсации, а при метаболических нарушениях – респираторные.

Диагностика КОС

Для анализа кислотно-основного состояния крови может браться из вены или пальца – любая. Дело в том, что кровь из пальца может считаться артериализованной, поскольку ее показатели близки к показателям крови из артерий, которые считаются наиболее пригодными и чистыми для исследований.

Капиллярную кровь собирают в стеклянные колбы объемом 50 мкл или специальные пробирки с антикоагулянтами.

Более постоянной считается артериальная. Объем забираемой крови – 0,1-0,2 мл – буквально несколько капель. Определение рН крови проводится электрометрическим способом с помощью стеклянных рН-электродов. Кислотность крови может определяться и другими способами: по цвету конъюнктивы (система В. Караваева), в домашних условиях.

Цвет конъюнктивы определяется оттягиванием нижнего века. Бледно-розовая конъюнктива – ацидоз, темно-розовая – алкалоз, яркая – норма.

Моча для определения не используется, рН организма она точно не покажет.

Методов в домашних условиях несколько: при помощи лакмусовой бумажки, электронного прибора, по цвету конъюнктивы и по нижнему давлению и пульсу.

Эти методы оперативные и могут использоваться в срочных случаях, хотя и не совсем точны по сравнению с лабораторными данными.

Для исследования газов крови и определения PaCO2 в крови используется метод Аструпа с одноименным электродом или электрод Северингхауса. Полученные значения рассчитывают с помощью номограммы.

Влияние кислотно-основных состояний крови

На этот счет имеются точные научные факты и доказательства. Исследование показателей кислотно-основного состояния крови подтверждают, что изменения pH больше, чем на 0,4, с жизнью несовместимы. Число ионов водорода в плазме в норме составляет 40 нмоль/л, размах – от 36 до 45. Это значение соответствует рН 7,4. О полной компенсации можно говорить при колебаниях рН в пределах 7,35-7,45.

Далее происходит уже нарушение кислотно-основного состояния и трактовка его может быть двоякой:

  1. Ацидоз — субкомпенсированный (рН 7,25-7,35), декомпенсированный (рН 7,55).

Колебания рН выглядят как будто незначительными, но такое впечатление складывается из-за шкалы логарифмов. На самом деле разница даже всего лишь в единицу рН означает увеличение концентрации протонов в 10 раз.

Метаболические нарушения

Буферные основания (Buffer Base, ВВ) — сумма всех анионов в крови. Какие анионы могут содержаться в плазме — натрий, фосфор, хлор, калий и железо. Они связаны с уменьшением или увеличением нелетучих кислот в крови. А ВЕ – это разница между ВВ и должным содержанием (концентрацией) буферных оснований. Их количество от напряжения СО2 не зависит.

В норме содержание ВВ выражается как 48,0 ± 2,0 ммоль/л. Референтное содержание ВЕ составляет 2,5 ммоль/л. На практике главным показателем является именно ВЕ.

В состоянии ацидоза основания в дефиците и ВЕ снижаются. Таким образом, величина BE — наиболее информативный показатель метаболических нарушений кислотно-основного состояния со знаком + или –. Дефицит оснований – это ацидоз, избыток за пределы нормы колебаний – метаболический алкалоз.

Итак, виды нарушений кислотно-основного состояния могут проявляться в алкалозе, ацидозе – респираторном или метаболическом.

Метаболический (обменный) ацидоз возникает при накоплении недоокисленных продуктов распада, т. е. нелетучих кислот. Такое нарушение развивается с дефицитом поступления кислорода, нарушениях кровотока в сосудах, нарушениях углеводного обмена с накоплением кетоновых тел в крови при диабете, острой почечной и печеночной недостаточности, выраженной диарее, недостаточности сердечной деятельности, любом виде шока, отравлении древесным спиртом, антифризом, салицилатами и др.

Для его компенсации организм подключает дыхательный алкалоз, развивающийся с гипервентиляцией легких на фоне дыхания Куссмауля. Это патологическое дыхание ацидотическое, ассоциируется с гипервентиляцией легких.

Метаболический (обменный) алкалоз могут вызывать тяжелые электролитные нарушения. По сравнению с ацидозом, он встречается реже. Его причинами могут стать введение NaHCO3 при диффузиях растворов в избыточном количестве, употребление ощелачивающих продуктов (растительные, молочные), неукротимая рвота с потерей хлоридов, прием диуретиков, которые вызывают потерю калия и выведение тех же хлоридов, избыточная продукция альдостерона корой надпочечников в результате гиповолемии. Сюда же относится и сам гиперкортицизм, при переливании достаточно большого объема крови, хранившейся с цитратом натрия, т. е. с содержанием окислов азота. Респираторные нарушения КОС (кислотно-основного состояния) могут возникнуть при неадекватной вентиляции легких и колебаниях СО2 в крови.

Респираторный (дыхательный) алкалоз возникает при гипервентиляции – произвольной и непроизвольной. У здоровых людей такое состояние может возникнуть при большом подъеме в горы, при марафонском беге, эмоциональном возбуждении. У больных – при сердечных и легочных патологиях, когда имеется одышка. При выраженной гипокапнии (PaCO2 ниже 20 или 25 мм рт. ст.) и, как следствие, дыхательном алкалозе, могут при отсутствии мер развиться судороги и быть летальный исход. Особенно неблагоприятен дыхательный алкалоз при гипоксии, т. е. уменьшении снабжения кислородом – при летных происшествиях, к примеру. Гипервентиляция возникает при травмах головы, опухолях мозга, интоксикациях при сепсисе, передозировке салицилатов, печеночной недостаточности.

Респираторный ацидоз

Суть его в накоплении в крови СО2 в результате дыхательной недостаточности. Это гиперкапния и гиповентиляция легких. Она может развиться как следствие нахождения человека в условиях с повышенным содержанием СО2.

С гиповентиляцией связана всегда дыхательная недостаточность, возникающая в результате угнетения дыхательного центра. Причинами патологии являются: инфекции, отравление снотворными, черепно-мозговые травмы, миастения, хронические легочные патологии.

Компенсаторные механизмы, которые организм подключает, пытаясь скорректировать рН до нейтральных значений, никогда не будут действовать с избытком – это контролируется. И означает, например, что при респираторных нарушениях компенсация рН будет стремиться к норме, но никогда не превысит 7,4. Следует заметить, что полная компенсация бывает редко достижимой.

Подсказки

Сдвиги КОС, которые вызвали включение компенсаторных механизмов, всегда первичны, а компенсация – вторична. Надо учитывать, что первичные нарушения показателей при определении кислотно-основного состояния выражены всегда в большей степени, чем компенсаторные, и именно они определяют сдвиг рН в ту или иную сторону.

Корректная трактовка сдвигов первичных и компенсаторных вторичных необходима и обязательна потому, что она определяет дальнейшую адекватную коррекцию этих нарушений, т. е. терапию по оказанию первой помощи и лечения в дальнейшем.

Для исключения ошибок в диагностике кислотно-основного состояния крови, всегда нужно учитывать и PaO2 наряду с другими компонентами нарушения и сочетание с клиническими проявлениями патологии.

Для подсказки: любое первичное нарушение (метаболическое или респираторное), независимо от этиологии, параллельно отклонению pH. А компенсаторный эффект ему противоположен.

Кислотно-основное состояние плазмы крови в оценке ургентных состояний организма в реанимационной практике – крайне важная величина и показатель. Благодаря ему можно спрогнозировать состояние организма при экстремальной ситуации.

В клинической практике для оценки кислотно-основного состояния используют следующие показатели:

pH-величина отрицательного десятичного логарифма молярной концентрации ионов водорода, крови, рН артериальной крови (плазмы) при 37 С колеблется в пределах 7,40±0,04 (слабощелочная реакция).

рО2— парциальное давление кислорода в крови. Определяется в капиллярной артериализированной крови, в норме составляет ≥ 81мм рт.ст. При определении в артериальной крови колеблется от 90 до 100 мм рт.ст. Сдвиги этого показателя могут быть обусловлены как изменениями дыхательной функции крови, так и нарушениями тканевого метаболизма.

рСО2-парциальное давление углекислого газа в крови. Этот показатель отражает количество растворенного углекислого газа в плазме, что является одной из нескольких форм, в которых он присутствует в крови. Углекислый газ также входит в состав угольной кислоты (НСО), иона бикарбоната (НСО), в комбинации с белками плазмы и связанном виде с гемоглобином (карбаминогемоглобин).

В легких процесс идет в противоположном направлении из-за низкого парциального давления углекислого газа в альвеолярном воздухе, углекислый газ удаляется с выдыхаемым воздухом. При нормальной вентиляции рСО2 в артериальной и артериализированной капиллярной крови находится в диапазоне 40±5 мм рт.ст.( 4,7-6,0 кПа).

При оценке концентрации бикарбоната плазмы с помощью анализаторов регистрируют следующие показатели:

· ВВ — концентрация всех буферных анионов в плазме. (N -44-54 ммоль/л);

· ВЕ (избыток оснований) – отклонение содержания буферных анионов от нормы. (N от -2 до +3 ммоль/л);

· SB (стандартный бикарбонат) – это концентрация гидрокарбоната в плазме крови, которая эквилибрирована смесью газа с рСО2= 40 мм рт.ст. и рО2 > 100 мм рт. ст. при температуре 370 С.Низкий стандартный бикарбонат указывает на метаболический ацидоз, а увеличенный уровень SB – на метаболический алкалоз. ( N- 21,6- 26,9 ммоль/л);

· AB- истинный (актуальный) бикарбонат- это концентрация бикарбоната (гидрокарбоната) в пробе плазмы. Повышение содержания гидрокарбонатов может быть результатом метаболического алколоза или компенсаторного ответа на респираторный ацидоз. Сниженные уровни АВ появляются при метаболическом ацидозе и как компенсаторный механизм респираторного алколоза. ( N- 21-28 ммоль/л).

Нарушения кислотно-основного состояния

Сдвиги КОС обусловлены изменением концентрации ионов водорода в организме, что может приводить к ацидозу или алкалозу. Причины этих нарушений КОС могут быть как газовыми (дыхательными, респираторными), негазовыми и смешанными (рис. 1)

Нарушения КОС

Ацидоз Смешанные Алкалоз

( ацидоз+ алкалоз)

Газовый Негазовый Газовый Негазовый

Смешанный Смешанный

Ацидоз

Ацидоз- нарушение КОС, характеризующееся избыточным содержанием в крови и тканях анионов кислот (летучих и нелетучих) и снижением рН.

Ацидоз

Газовый Негазовый

Метаболический Экзогенный Выделительный

► Кишечный

§ лактат- ацидоз ► Почечный:

§ кетоацидоз

§ дистальный

§ проксимальный

§ смешанный

§ гиперкалиемический

Негазовый ацидоз

Основной причиной возникновения этого варианта ацидоза является нарушение тканевого метаболизма с образованием избыточного количества нелетучих эндогенных кислот. Метаболический ацидоз часто связан с нарушением обмена веществ, например, при диабете, голодании, лихорадке, при гипоксии. Наиболее часто встречается лактоацидоз.

Молочная кислота- конечный продукт анаэробного гликолиза, образуется из пировиноградной кислоты при угнетении лактатдегидрогеназы. Молочная кислота образуется в клетках всех органов и тканей, но в наибольших количествах в печени и мышцах. При нормальном кислородном обеспечении клеток большая часть молочной кислоты превращается в пируват, который окисляется или включается в реакции глюконеогенеза. Эти процессы особенно активно протекают в печени и, в меньшей степени, в почках.

Лактоацидоз

↑ образования лактата нарушение утилизации сочетанное нарушение

В сутки образуется около 15-20 ммоль лактата на 1 кг массы тела, а концентрация лактата в крови в норме составляет 0,5-1,5 ммоль/ л.

Выделяют два основных механизма лактоацидоза:

— значительное увеличение образования лактата

-нарушение утилизации молочной кислоты, но возможно сочетание этих механизмов.

Зачительное увеличение образования лактата, наблюдается при сверхнапряженной мышечной деятельности- интенсивных физических нагрузках ,судорогах, гипотермическом треморе и т.д. Уровень лактата в крови при этом может повышаться в 10 раз и более, происходит резкий сдвиг рН в кислую сторону- до 6,8. При лактоацидозе со сверхинтенсивным образованием молочной кислоты кислотно- основной баланс быстро восстанавливается за счет повышенной утилизации лактата.

Нарушение метаболизма также может привести к развитию лактоацидоза. При достаточном обеспечении клеток кислородом лактат трансформируется в пируват (ЛДГ –реакции), который утилизируется в митохондриях с использованием кислорода. Гипоксия, гипоперфузия тканей- процессы, которые способствуют развитию лактоацидоза. Такой механизм лактоацидоза является доминирующим при шоке, сердечной недостаточности, тяжелых анемиях и т.д. При гиперперфузии печени (например, при шоке) увеличивается продукция молочной кислоты (стимуляция гликолиза) и уменьшается ее метаболизм, то есть реализуются оба механизма лактоацидоза.

Увеличение образования лактата наблюдается при феохромоцитоме вследствие усиления процессов гликогенолиза.

Нарушение утилизации молочной кислоты может быть при:

— выраженной печеночно-клеточной недостаточности( острый гепатит, цирроз печени, обширное опухолевое поражение печени), так как в печени процессы глюконеогенеза протекают наиболее интенсивно.

— умеренный лактоацидоз (до 3 ммоль/л) может развиваться у больных алкоголизмом. Продукция лактата при этом обычно не повышена, но утилизация его нарушена, главным образом, из-за угнетения глюконеогенеза в печени. Употребление алкоголя может увеличивать тяжесть лактоацидоза в тех случаях, когда имеется гирепродукция молочной кислоты.

— лактоацидоз может быть связан с наследственными нарушениями метобализма углеводов: дефицитом глюкозо- 6-фосфатазы, дефектом глюконеогенеза, окисление пирувата и т.д., а также при врожденной или приобретенной дисфункции митохондрий ( отравление цианидами, СО и т.д. )

· Дефицит глюкозо-6-фосфатазы относится к гликогенозу I типа ( болезнь Гирке, синдром Гирке-Ван-Кревельда, гликогеноз гепатонефромегальный). Глюкозо-6-фосфат, образующийся при распаде гликогена, не гидролизуется до глюкозы, а обменивается до лактата, избыток которого определяется в крови. Заболевание проявляется в раннем детском возрасте отставанием в развитии, гепатомегалией вследствие накопления гликогена в печени, гастроинтестинальными расстройствами (анорексия, рвота, диарея), повышенной кровоточивостью, инфекциями. В анализах крови отмечается гипогликемия, гиперлипидемия, лактоацидоз, гиперурикемия. Прогноз неблагоприятный: большинство больных погибает в раннем детском возрасте от инфекционных заболеваний.

Наследственные нарушения глюконеогенеза:

1. Недостаточность фруктозодифосфатазы проявляется тяжелой гипогликемией при продолжительном голодании или при сопутствующем инфекционном заболевании. Характерны гепатомегалия и стойкий лактоацидоз, усиливающийся при голодании. Диагноз основан на определении активности фермента в биоптатах печени или в лейкоцитах.

2. При непереносимости фруктозы (недостаточности фруктозодифосфатальдолазы) гипогликемия и лактоацидоз возникают только после приема фруктозы. Характерна выраженная гепатомегалия. Тяжелая гипогликемия может сопровождаться неукротимой рвотой. При умеренной гипогликемии наблюдается задержка роста ребенка.

3. Недостаточность фосфоенолпируваткарбоксикиназы, ключевого фермента глюконеогенеза,- очень редкая причина лактоацидоза и гипогликемии. Фосфоенолпируваткарбоксикиназа участвует в синтезе глюкозы из лактата, метаболитов цикла Кребса, аминокислот и жирных кислот.

·Описаны случаи лактоацидоза при лекаственно-индуцированной дисфункции митохондрий. К препаратам, способным оказать такой эффект относятся бигуаниды, использующиеся для лечения сахарного диабета (метформин и др.), противовирусные нуклеозидные аналоги, используемые при синдроме приобретенного иммунодефицита (СПИД).

Примером наследственной митохондриальной патологии является заболевание MELAS, включающее митохондриальную энцефалопатию (МЕ), лактоацидоз (LA) и эпизоды, подобные инсультам (S-stroke). Дети с этой патологией на протяжении первых лет жизни жалоб не предъявляют, но затем начинают проявляться нарушения моторного и конгитивного развития, замедление роста, повторные инсульты и т.д. Значение лактоацидоза в патогенезе этого заболевания подтверждается тем, что снижение уровня молочной кислоты в результате терапевтических воздействий приводит к выраженному клиническому улучшению.

Особая форма лактоацидоза- синдром Рейе (1968): при назначении салицилатов детям до 16 лет в период реконвалесценции(!) при гриппе и ветряной оспе в ряде случаев развивается полиорганная недостаточность, рвота, судороги, ступор, кома. В механизме этих тяжелых нарушений придается значение митохондриальной недостаточности и лактоацидозу.

В ряде случаев причины лактоацидоза остаются окончательно невыясненными. Такие варианты ацидоза описаны у пациентов с лейкозами, лимфомами, лимфогранулематозом и другими злокачественными новообразованиями, при СПИДе.

При новообразованиях может локально повышаться тканевой метаболизм с продукцией лактата опухоли, при этом в карциноматозных клетках может наблюдаться отрицательный эффект Пастера- отсутствие торможения гликолиза в аэробных условиях и накопление молочной кислоты.

Лактоацидоз может быть обусловлен накоплением в крови D- лактата (продукта метаболизма бактерий кишечника) при синдроме слепой петли и кишечной непроходимости. В этих случаях неабсорбированные углеводы попадают в толстую кишку, где превращаются в D- молочную кислоту при чрезмерно быстром росте грамположительных анаэробов. У таких пациентов периодически возникают эпизоды метаболического ацидоза, к которым приводит употребление пищи, богатой углеводами. Проявления включают спутанность сознания, церебральную атаксию, невнятность речи и провалы памяти. У них могут появляться симптомы интоксикации. Лечение включает использование антимикробных препаратов для снижения числа D- лактатпродуцирующих микроорганизмов в кишке наряду с диетой, содержащей ограниченное количество углеводов.

Кетоацидоз

Кетоацидоз развивается при избыточном образовании и/или нарушении утилизации клетками кетокислот (ацетоуксусной, β- гидроксимасляной). Кетоновые тела- группа органических соединений, являющихся промежуточными продуктами энергетического обмена, т.е. метаболизма белков, жиров и углеводов. Термином »кетоновые тела» обозначают три соединения: ацетоуксусную кислоту (ацетоацетат), β- гидроксимасляную кислоту (бета-ацетат) и ацетон. Образование кетоновых тел, или кетогенез, является физиологическим процессом, то есть частью энергетического обмена. Кетокислоты (кетоновые тела) образуются в митохондриях гепатоцитов из жирных кислот, поступают в кровь и используются в качестве источника энергии клетками различных органов, особенно интенсивно клетками сердца, почек, мозга, мышц (но не клетками печени, так как в гепатоцитах отсутствует Ко- А- трансфераза). Ключевым субстратом энергетического обмена и одновременно исходной субстанцией для синтеза кетокислот служит ацетил-КоА.

В норме кетоновые тела в крови практически отсутствуют («следы»),так как интенсивно утилизируются.

Увеличение образования кетоновых тел, превышающие возможности их использования, чаще всего наблюдают при усиленном распаде жира(голодание, сахарный диабет I типа, тиреотоксикоз и т.д.). При этом образуется избыток жирных кислот, которые поступают в печень: интенсификация β-окисления жирных кислот сопровождается превращением образующегося в избытке ацетил-КоА в кетоновые тела.

Большая часть кетоновых тел подвергается окислению в цикле Кребса, часть-используется для ресинтеза высших жирных кислот. Резервные возможности организма в плане утилизации кетоновых тел очень большие: при образовании 2,5 г кетоновых тел/кг в сутки ацидоз не развивается.

При гиперкетонемии часть ацетоуксусной кислоты неферментативно декарбоксилируется в ацетон, оказывая токсическое , в том числе нейротоксическое действие на организм.

Наиболее частая причина кетоацидоза- декомпенсированный сахарный диабет. Усиленный кетогенез в этом случае обусловлен, с одной стороны, дефицитом инсулина, с другой- избытком контринсулярных гормонов: глюкагона, катехоламинов, кортизола и СТГ. Контринсулярные гормоны активизируют в основном процессы катаболизма, поэтому в условиях недостатка инсулина усиливается гликолиз, гликогенолиз, глюконеогенез и липолиз. Липолиз сопровождается ростом в крови уровня свободных жирных кислот (СЖК), из которых в печени под действием глюкагона в избытке синтезируются кетокислоты. Вследствие того, что при недостатке инсулина замедляются анаболические процессы, в том числе ,утилизация кетокислот, последние накапливаются в крови с развитием кетоацидоза.

ДКА возникает вследствие абсолютного или относительного дефицита инсулина, который может развиваться в течение нескольких часов или дней.

У больных, получающих инъекции инсулина, причинами ДКА могут быть:

— назначение неадекватных (слишком низких ) доз инсулина;

— нарушение режима инсулинотерапии;

— резкое возрастание потребности в инсулине: инфекционные заболевания(сепсис, особенно уросепсис, пневмония, другие инфекции дыхательных и мочевых путей, менингит, синусит, холецистит, панкреатит и д.р.), сопутствующие эндокринные нарушения(тиреотоксикоз, синдром Иценко-Кушинга, акромегалия, феохромоцитома), инфаркт миокарда, инсульт, травмы, хирургические вмешательства, медикаментозная терапия (глюкокортикоиды, эстрогены, в том числе пероральные контрацептивы), беременность, стрессы (во всех этих случаях увеличение потребности в инсулине обусловлено увеличением концентрации контринсулярных гормонов- адреналина, кортизола,глюкагона и СТГ, а также резистентностью тканей к инсулину).

Кетоацидоз при голодании

Другая, частая причина кетоацидоза- голодание. Со 2-3-го дня полного голодания в связи с дефицитом углеводов уменьшается продукция инсулина, увеличивается образование глюкагона и стимулируется мобилизация жира из депо, β- окисление жирных кислот и кетогенез. Уровень кетокислот в крови обычно не превышает 10 ммоль/л, то есть не достигает тех значений, которые имеют место при некомпенсированном сахарном диабете.

Полное, или «влажное», голодание (без ограничения приема воды) наиболее широко используется в клинической практике. Разгрузочно-диетическую терапию (РДТ) применяют для лечения заболеваний внешнего дыхания (бронхиальная астма), алиментарных нарушений обмена веществ (ожирение), некоторых заболеваний нервной системы, аутоиммунных болезней и д.р.

Разгрузочный период дозируется индивидуально, в зависимости от возраста, нозологической формы, состояния пациента, переносимости РДТ. Считается целесообразным достижение «кетоацидотического» криза, который у большинства пациентов при полном голодании наблюдается на 7-9 сутки.

I стадия- пищевое возбуждение, продолжительность 2-3 дня. Характеризуется приступами голода, сопровождающимися слюноотделением, повышенной перистальтикой. Происходит интенсивная потеря массы тела (до 1-1,4 кг в сутки) в основном за счет жидкости и продуктов катаболизма. Объем потребляемой жидкости практически не изменяется, наблюдается незначительная тахикардия.

II стадия— нарастающего кетоацидоза. Она продолжается до 7-9 суток разгрузочного периода. В этот период отмечается нарастающая кетонемия, кетонурия и метаболический кетоацидоз, повышение содержания непрямого билирубина. Концентрация кетоновых тел в крови возрастает в 20-30 раз (при нормальном пищевом режиме она составляет в среднем 0,1 нмоль/л). С началом активной мобилизации жировых депо организма (подкожно-жировой слой, сальник, брыжейка) наибольшая метаболическая нагрузка приходится на печень, в которой триглицериды расщепляются до свободных жирных кислот с последующим их окислением, а также синтез липопротеидов высокой и низкой плотности.

С 5-7-х суток полного голодания отмечается умеренная холестеринемия (6,5-7,5 ммоль/л), которая является проходящей, так как холестерин активно используется для синтеза желчных кислот и кортикостероидных гормонов. В печени из жирных кислот синтезируются кетоновые тела (ацетон, ацетоуксусная и β- гидроксимасляная кислоты), играющие роль основного источника энергии (до 60-70%) для мозга, миокарда и скелетных мышц. С 3-4-х суток полного голодания организм начинает функционировать более экономично. Параллельно снижению уровня адреналина и норадреналина в крови возрастает концентрация кортикостероидных гормонов (кортизола, гидрокортизона, альдостерона).

В это время чувство голода понижается, появляются запах ацетона изо рта и «металлический» привкус во рту, обложенность языка беловато-серым налетом. Иногда отмечаются умеренная брадикардия (ЧСС до 48-60 в мин.), снижение артериального давления, могут возникать ортостатические коллапсы.

В крови –субкомпенсированный метаболический ацидоз, умеренная гипогликемия, снижаются уровни калия и мочевины. В моче увеличивается содержание кетоновых тел, которое достигает максимума на 7-9-е сутки, что соответствует периоду «кетоацидотического криза». После этого состояние больных значительно улучшается.

III стадия (компенсированного кетоацидоза) начинается с 7-9-х суток и продолжается до конца разгрузочного периода (14-21-е сутки). В этой стадии в качестве энергетического субстрата активно используются кетоновые тела. Кетонемия уменьшается и метаболический ацидоз компенсируется, что проявляется улучшением самочувствия, уменьшением чувства голода, слабости, головных болей. В крови повышается содержание глюкозы (глюконеогенез из кетоновых тел и глюкогенных аминокислот), гипертриглицеридемия и холестеринемия уменьшаются. Возрастает в 1,5-2 раза активность ферментов преаминирования- АЛТ, АСТ. До 14-20-х суток полного голодания не происходит существенного использования белковых струкрур организма (плазменного и мышечного белка ). От 70 до 90% общего расхода энергии обеспечивается за счет окисления триглицеридов жировых депо и кетоновых тел. Суточная потеря массы тела устанавливается на минимальном уровне (100-200 г/сут.).

В случае развития кетоацидоза при голодании, в том числе и лечебном, больным назначают энтерально щелочные растворы.

Кетоацидоз при хроническом алкоголизме

Алкогольный кетоацидоз развивается в результате прямого ингибирующего действия этанола на глюконеогенез и прямого стимулирующего влияния на липолиз, а также частичного голодания в связи с анорексией. Метаболический ацидоз при акогольной интоксикации развивается вследствие увеличенной продукции не только кетокислот, но и молочной кислоты. Это объясняется следующим:

— часть этанола превращается в ацетоуксусную кислоту;

— на фоне гиповолемии вследствие рвоты и дегидратации, характерной для этих пациентов, увеличивается образование молочной кислоты.

При алкогольной интоксикации нарушение КОС часто имеют смешанный характер.

Кислотно-основное состояние крови оценивается комплексом показателей.

Величина рН — основной показатель КОС. У здоровых людей рН артериальной крови равен 7,40 (7,35-7,45), т.е. кровь имеет слабощелочную реакцию. Снижение величины рН означает сдвиг в кислую сторону — ацидоз (рН 7,45).

Размах колебаний рН кажется небольшим вследствие применения логарифмической шкалы. Однако разница в единицу рН означает десятикратное изменение концентрации водородных ионов. Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) считаются несовместимыми с жизнью.

Колебания рН в пределах 7,35-7,45 относятся к зоне полной компенсации. Изменения рН вне пределов этой зоны трактуются следующим образом:

• субкомпенсированный ацидоз (рН 7,25-7,35);

• декомпенсированнй ацидоз (рН 7,55).

РаСO2 (РСO2) — напряжение углекислого газа в артериальной крови. В норме РаСO2 составляет 40 мм рт. ст. с колебаниями от 35 до 45 мм рт. ст. Повышение или снижение РаСO2 является признаком респираторных нарушений.

Альвеолярная гипервентиляция сопровождается снижением РаСO2 (артериальной гипокапнией) и респираторным алкалозом, альвеолярная гиповентиляция — повышением РаСO2 (артериальной гиперкапнией) и респираторным ацидозом.

Буферные основания (Buffer Base, ВВ) — общее количество всех анионов крови. Поскольку общее количество буферных оснований (в отличие от стандартных и истинных бикарбонатов) не зависит от напряжения СO2, по величине ВВ судят о метаболических нарушениях КОС. В норме содержание буферных оснований составляет 48,0 ± 2,0 ммоль/л.

Избыток или дефицит буферных оснований (Base Excess, BE) — отклонение концентрации буферных оснований от нормального уровня. В норме показатель BE равен нулю, допустимые пределы колебаний ±2,3 ммоль/л. При повышении содержания буферных оснований величина BE становится положительной (избыток оснований), при снижении — отрицательной (дефицит оснований). Величина BE является наиболее информативным показателем метаболических нарушений КОС благодаря знаку (+ или -) перед числовым выражением. Дефицит оснований, выходящий за пределы колебаний нормы, свидетельствует о наличии метаболического ацидоза, избыток — о наличии метаболического алкалоза.

Стандартные бикарбонаты (SB) — концентрация бикарбонатов в крови при стандартных условиях (рН = 7,40; РаСO2 = 40 мм рт. ст.; t = 37 °С; SO2 = 100%).

Истинные (актуальные) бикарбонаты (АВ) — концентрация бикарбонатов в крови при соответствующих конкретных условиях, имеющихся в кровеносном русле. Стандартные и истинные бикарбонаты характеризуют бикарбонатную буферную систему крови. В норме значения SB и АВ совпадают и составляют 24,0 ± 2,0 ммоль/л. Количество стандартных и истинных бикарбонатов уменьшается при метаболическом ацидозе и увеличивается при метаболическом алкалозе.

6.2. Нарушения кислотно-основного состояния

Метаболический (обменный) ацидоз развивается при накоплении в крови нелетучих кислот. Он наблюдается при гипоксии тканей, нарушениях микроциркуляции, кетоацидозе при сахарном диабете, почечной и печеночной недостаточности, шоке й других патологических состояниях. Наблюдается уменьшение величины рН, снижение содержания буферных оснований, стандартных и истинных бикарбонатов. Величина BE имеет знак (-), что свидетельствует о дефиците буферных оснований.

К метаболическому (обменному) алкалозу могут приводить тяжелые нарушения обмена электролитов, потеря кислого желудочного содержимого (например, при неукротимой рвоте), чрезмерное потребление с пищей щелочных веществ. Увеличивается значение рН (сдвиг в сторону алкалоза) — повышается концентрация ВВ, SB, АВ. Величина BE имеет знак (+) — избыток буферных оснований.

Причиной дыхательных нарушений кислотно-основного состояния является неадекватная вентиляция.

Респираторный (дыхательный) алкалоз возникает в результате произвольной и непроизвольной гипервентиляции. У здоровых людей он может наблюдаться в условиях высокогорья, при беге на длинные дистанции, при эмоциональном возбуждении. Одышка легочного или сердечного больного, когда нет условий для задержки СO2 в альвеолах, искусственная вентиляция легких могут сопровождаться респираторным алкалозом. Он протекает с повышением рН, снижением РаСO2, компенсаторным уменьшением концентрации бикарбонатов, буферных оснований, нарастанием дефицита буферных оснований.

При выраженной гипокапнии (РаСO2 Стр 5 из 5 5

Добавить комментарий