Степень числа с натуральным показателем это

Содержание:

Степень с натуральным показателем и ее свойства.

Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:

a n =

В выражении a n :

— число а (повторяющийся множитель) называют основанием степени

— число n (показывающее сколько раз повторяется множитель) – показателем степени

Например: 2 5 = 2·2·2·2·2 = 32, здесь: 2 – основание степени, 5 – показатель степени, 32 – значение степени

Отметим, что основание степени может быть любым числом.

Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 10 8

Каждое число большее 10 можно записать в виде: а · 10 n , где 1 3 ;

103000 = 1,03 · 10 5 .

Свойства степени с натуральным показателем:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются

например: 7 1.7 · 7 — 0.9 = 7 1.7+( — 0.9) = 7 1.7 — 0.9 = 7 0.8

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются

например: 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

3. При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.

например: (2 3 ) 2 = 2 3·2 = 2 6

4. При возведении в степень произведения в эту степень возводится каждый множитель

(a · b) n = a n · b m ,

5 . При возведении в степень дроби в эту степень возводятся числитель и знаменатель

Видеоурок 1: Свойства степени с натуральным показателем

Видеоурок 2: Степень с натуральным показателем и ее свойства

Лекция: Степень с натуральным показателем

Степень с натуральным показателем

Когда говорят о степени с натуральным показателем, это означает, что число "n" должно быть целым и не отрицательным.

а — основание степени, которое показывает, какое число следует умножать само на себя,

n — показатель степени — он говорит, сколько раз основание нужно умножить само на себя.

8 4 = 8 * 8 * 8 * 8 = 4096.

В данном случае под основанием степени понимают число "8", показателем степени считается число "4", под значением степени понимается число "4096".

Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание — ЭТО НЕ ВЕРНО!

Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом.

В качестве основания можно брать любые числа с числовой прямой.

Математическое действие, которое совершается над основанием и показателем степени, называется возведение в степень.

Сложение \ вычитание — математические действия первой ступени, умножение \ деление — действие второй ступени, возведение степени — это математическое действие третьей ступени, то есть одной из высших.

Данная иерархия математических действий определяет порядок при расчете. Если данное действие встречается в задачах среди двух предыдущих, то оно делается в первую очередь.

В данном примере необходимо сначала возвести 2 в степень, то есть

затем полученный результат умножить на 6, то есть

Степень с натуральным показателем используется не только для конкретных вычислений, но и для удобства записи больших чисел. В данном случае еще используется понятие "стандартный вид числа". Данная запись подразумевает умножение некоторого числа от 1 до 9 на основание степени равное 10 с некоторым показателем степени.

Например, для записи радиуса Земли в стандартном виде используют следующую запись:

6400000 м = 6,4 * 10 6 м,

а масса Земли, например, записывается следующим образом:

Свойства степени

Для удобства решений примеров со степенями необходимо знать основные их свойства:

1. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

2. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b) m = a m * b m

(5 * 8 ) 2 = 5 2 * 8 2 .

5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

6. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

7. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

Нижеприведенная формула будет являться определением степени с натуральным показателем ( a — основание степени и повторяющийся множитель, а n — показатель степени, который показывает сколько раз повторяется множитель):

Данное выражение означает, что степень числа a с натуральным показателем n является произведением n сомножителей, при том, что каждый из множителей равняется a .

Содержание

Правило чтения и записи степеней с натуральным показателем

Краткую запись произведения одинаковых сомножителей очень удобно использовать, — длинная строка описания математических действий сокращается до записи нескольких шагов:

17^5=17 \cdot 17 \cdot 17 \cdot 17 \cdot 17=1\,419\,857

17 — основание степени,

5 — показатель степени,

1419857 — значение степени.

Степень с нулевым показателем равна 1 , при условии, что a \neq 0 :

Когда нужно записать большое число обычно используют степень числа 10 .

Например, один из самых древних динозавров на Земле жил около 280 млн. лет назад. Его возраст записывается следующим образом: 2,8 \cdot 10^8 .

Каждое число большее 10 можно записать в виде a \cdot 10^n , при условии, что 1 и n является положительным целым числом. Такую запись называют стандартным видом числа.

Примеры таких чисел: 6978=6,978 \cdot 10^3, 569000=5,69 \cdot 10^5 .

Можно говорить как и « a в n -ой степени», так и « n -ая степень числа a » и « a в степени n ».

4^5 — «четыре в степени 5 » или « 4 в пятой степени» или также можно сказать «пятая степень числа 4 »

В данном примере 4 — основание степени, 5 — показатель степени.

Приведем теперь пример с дробями и отрицательными числами. Для избежания путаницы принято записывать основания, отличные от натуральных чисел, в скобках:

(7,38)^2 , \left(\frac 12 \right)^7 , (-1)^4 и др.

Заметьте также разницу:

(-5)^6 — означает степень отрицательного числа −5 с натуральным показателем 6.

-5^6 — соответствует числу противоположному 5^6 .

Свойства степеней с натуральным показателем

Основное свойство степени

Основание остается прежним, а складываются показатели степеней.

Например: 2^3 \cdot 2^2 = 2^<3+2>=2^5

Свойство частного степеней с одинаковыми основаниями

a^n : a^k=a^, если n > k .

Показатели степени вычитаются, а основание остается прежним.

Данное ограничение n > k вводится для того, чтобы не выходить за рамки натуральных показателей степени. Действительно, при n > k показатель степени a^ будет являться натуральным числом, иначе он будет либо отрицательным числом ( k ), либо нулем ( k-n ).

Например: 2^3 : 2^2 = 2^<3-2>=2^1

Свойство возведения степени в степень

Основание остается прежним, перемножаются лишь показатели степеней.

Свойство возведения в степень произведения

В степень n возводится каждый множитель.

a^n \cdot b^n = (ab)^n

Например: 2^3 \cdot 3^3 = (2 \cdot 3)^3=6^3

Свойство возведения в степень дроби

В степень возводится и числитель и знаменатель дроби. \left(\frac<2> <5>\right)^3=\frac<2^3><5^3>=\frac <8>

Добавить комментарий