Методы исследования головного мозга человека

Головной мозг — передний отдел центральной нервной системы позвоночных животных и человека, помещающийся в полости черепа, а также материальный субстрат высшей нервной деятельности и главный регулятор всех жизненных функций организма.

Проблема исследования мозга человека, проблема соотношения мозга и психики одна из самых захватывающих задач, которые ставились в науке. Несмотря на значительный прогресс в изучении головного мозга в последние годы, многое в его работе до сих пор остаётся загадкой. Функционирование отдельных клеток достаточно хорошо объяснено, однако понимание того, как в результате взаимодействия тысяч и миллионов нейронов мозг функционирует как целое, доступно лишь в очень упрощённом виде и требует дальнейших глубоких исследований.

Методы и исследования мозга:

Развитие современных методов исследований функционального состояния головного мозга напрямую связано с прогрессом в технической области.

На сегодняшний день основными нейрофизиологическими методиками, определяющими функциональное состояние головного мозга человека, являются следующие:

Электроэнцефалография (ЭЭГ) — метод исследования функционального состояния головного мозга, основанный на регистрации его биоэлектрической активности через неповрежденные покровные ткани головы. Применяется для оценки функционального состояния коры головного мозга.

Первая запись биотоков головного мозга была произведена в 1928 г. Гансом Бергером.

На ЭЭГ регистрируется электрическая активность мозга, генерирующаяся в коре, синхронизирующаяся и модулирующаяся таламусом (область головного мозга, отвечающая за перераспределение информации от органов чувств, за исключением обоняния, к коре головного мозга) и ретикулярными активирующими структурами (сетчатая структура ствола мозга). Регистрация биоэлектрических потенциалов головного мозга и графическое их изображение фотографическим методом или путем чернильной записи производятся специальным прибором — электроэнцефалографом.

Показания к ЭЭГ:

Электроэнцефалография является одним из основных методов нейрофизиологического исследования у пациентов с заболеваниями и повреждениями нервной системы. ЭЭГ является методом, позволяющим судить о наличии, локализации, динамике и, в определенной степени, о характере патологического процесса в головном мозге – это ключ в диагностике таких патологических состояний головного мозга, как эпилепсия, эпилептоидные абсансы (разновидности эпилептических приступов) и другие подобные заболевания, а также в исследовании физиологии сна и речевых расстройств.

Как проводится электроэнцефалография:

Исследование должно проводиться в свето- и звукоизолированном помещении.

На голову человека одевается специальная шапочка с электродами-антенами, соединенными с самим прибором. Сигналы, поступающие с коры головного мозга, передаются на электроэнцефалограф, который преобразует их в графическое изображение (волны). Это изображение напоминает ритм сердца на электрокардиограмме (ЭКГ).

В процессе регистрации биотоков мозга пациент находится в кресле в удобном положении (полулежа). При этом ему не следует: а) находиться под воздействием седативных средств; б) быть голодным (в состоянии гипогликемии); в) быть в состоянии психоэмоционального возбуждения.

Информативность электроэнцефалограммы повышается, если запись ее производится у пациента, находящегося в состоянии сна.

С помощью ЭЭГ получают информацию о функциональном состоянии мозга при разных уровнях сознания пациента. Достоинством этого метода являются его безвредность, безболезненность, неинвазивность.

Электроэнцефалограммой (ЭЭГ) называется, записанная кривая, отражающая характер биотоков мозга

Электроэнцефалограмма отражает суммарную активность большого количества клеток мозга и состоит из многих компонентов. Анализ электроэнцефалограммы позволяет выявить на ней волны, различные по форме, постоянству, периодам колебаний и амплитуде (вольтажу). Электроэнцефалограмма (ЭЭГ) здорового человека имеет характерные черты: от всех областей коры отводится ритмическая активность с частотой около 10 Гц и амплитудой 50100 мкВ — альфа-ритм. На электроэнцефалограмме (ЭЭГ) регистрируются также другие ритмы: как более низкие — дельта- (имеющие частоту 0,5—3 Гц и амплитуду до 20—40 мкВ) и тета- (с частотой 4—7 Гц и с амплитудой в тех же пределах), так и более высокие— бета-ритмы (с частотой колебаний больше 13 Гц (чаще 16—30) и амплитудой до 15 мкВ), но амплитуда в норме их невысока и они перекрываются альфа-колебаниями.

Электроэнцефалограмма (ЭЭГ) изменяется при изменении функционального состояния. Например, при переходе ко сну доминирующими становятся медленные колебания, а альфа-ритм исчезает.

У здорового человека выражена альфа-активность, а дельта- и тета-ритмы практически не заметны, так как они перекрываются имеющим более выраженную амплитуду альфа-ритмом. Однако, при значении патологической активности на ЭЭГ взрослого бодрствующего человека являются тета- и дельта-активность, а также эпилептическая активность.

Предрасположенность к судорожным состояниям и проявляющейся следующими признаками:

1) острые волны (пики) — колебание потенциала, имеющего крутое нарастание и крутой спад, при этом острота волны обычно превышает амплитуду фоновых колебаний, с которыми они сочетаются; острые волны могут быть единичными или групповыми, выявляются в одном или многих отведениях; 2) комплексы пик—волна, представляющие собой колебания потенциала, состоящие из острой волны (пика) и сопутствующей ей медленной волны; при эпилепсии эти комплексы могут быть единичными или следуют друг за другом в виде серий;

3) пароксизмальные ритмы — ритмы колебаний в форме вспышек высокой амплитуды разной частоты, обычны пароксизмальные ритмы тета- и дельта-колебаний или медленных волн 0,5—1,0 Гц.

По данным ЭЭГ возможно отличить диффузное поражение мозга от локального патологического процесса, установить сторону и в определенной степени локализацию патологического очага, отдифференцировать поверхностно расположенный патологический очаг от глубинного, распознать коматозное состояние и степень его выраженности; выявить фокальную и генерализованную эпилептическую активность.

Электроэнцефалография позволяет объективно оценить выраженность асимметрии ЭЭГ, наличие и генерализованных, и очаговых изменений электрической активности мозга, проявляющихся непосредственно во время ЭЭГ-исследования.

Эхоэнцефалография (ЭхоЭГ) — неинвазивный (на кожу не оказывается никакого воздействия с помощью игл или различных хирургических инструментов). метод исследования головного мозга с помощью ультразвуковой эхографии (ультразвука с частотой от 0,5 до 15 МГц/с). Звуковые волны такой частоты обладают способностью проникать сквозь ткани организма и отражаются от всех поверхностей, лежащих на границе тканей разного состава и плотности (мягкие покровы головы, кости черепа, мозговые оболочки, мозговое вещество, ликвор, кровь). Отражающими структурами могут быть и патологические образования (очаги размозжения, инородные тела, абсцессы, кисты, гематомы и др.). Применяется для оценки изменений в тканях мозга.

· Вызванные потенциалы головного мозга

· Топографическое картирование электрической активности мозга (ТКЭАМ)

· Компьютерная томография (КТ)

· Методы воздействия на мозг

Электроэнцефалография — метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности, отводимой как со скальпа, так и из глубоких структур мозга. Последнее у человека возможно лишь в клинических условиях. Регулярная электрическая активность мозга может быть зафиксирована уже у плода и прекращается только с наступлением смерти. Даже при глубокой коме и наркозе наблюдается особая характерная картина мозговых волн.

Вызванные потенциалы головного мозга

Вызванные потенциалы (ВП) — биоэлектрические колебания, возникающие в нервных структурах в ответ на внешнее раздражение и находящиеся в строго определенной временной связи с началом его действия. Регистрация ВП осуществляется специальными техническими устройствами, которые позволяют выделять полезный сигнал из шума путем последовательного его накопления, или суммации.

Топографическое картирование электрической активности мозга (ТКЭАМ) — область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциалов. Широкое применение этого метода стало возможным при появлении относительно недорогих и быстродействующих персональных компьютеров. Топографическое картирование существенным образом повышает эффективность ЭЭГ-метода. ТКЭАМ позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психической деятельности.

Компьютерная томография (КТ) — новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. КТ соединила в себе последние достижения рентгеновской и вычислительной техники, отличаясь принципиальной новизной технических решений и математического обеспечения. Главное отличие КТ от рентгенографии состоит в том, что рентген дает только один вид части тела. При помощи компьютерной томографии можно получить множество изображений одного и того же органа. Томографическое изображение — это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу.

Нейрональная активность Нейрон — нервная клетка, через которую передается информация в организме, представляет собой морфофункциональную единицу ЦНС человека и животных. Как правило, нейрон должен получить много приходящих импульсов прежде, чем в нем возникнет ответный разряд. Все контакты нейрона (синапсы) делятся на два класса: возбудительные и тормозные. Активность первых увеличивает возможность разряда нейрона, активность вторых — снижает. Регистрация ответов нейронов. Активность одиночного нейрона регистрируется с помощью так называемых микроэлектродов. Специальные устройства позволяют вводить такие электроды в разные отделы головного мозга, в таком положении электроды можно зафиксировать и, будучи соединены с комплексом усилитель — осциллограф, они позволяют наблюдать электрические разряды нейрона. С помощью микроэлектродов регистрируют активность отдельных нейронов, небольших ансамблей (групп) нейронов и множественных популяций (т.е. сравнительно больших групп нейронов). С помощью ЭВМ и специального программного обеспечения оцениваются такие параметры, как частота импульсации, частота ритмических пачек или группирования импульсов, длительность межстимульных интервалов и др. Активность нейронов регистрируют у животных в эксперименте, у человека в клинических условиях. Исследования активности нейронов головного мозга человека осуществляются в клинических условиях, когда пациентам с лечебными целями вводят в мозг специальные микроэлектроды. В ходе лечения для полноты клинической картины больные проходят психологическое тестирование, в процессе которого регистрируется активность нейронов. (и ниже).

Методы воздействия на мозг

Метод раздрожения

Сенсорная стимуляция — это использование естественных или близких к ним стимулов (зрительных, слуховых, обонятельных, тактильных и пр.). Диапазон применяемых стимулов весьма широк: — в сфере зрительного восприятия — от элементарных зрительных стимулов (вспышки, шахматные поля, решетки) до зрительно предъявляемых слов и предложений, с тонко дифференцируемой семантикой; — в сфере слухового восприятия — от неречевых стимулов (тонов, щелчков) до фонем, слов и предложений.

Электрическая стимуляция мозга является плодотворным методом изучения функций его отдельных структур. Она осуществляется через введенные в мозг электроды в "острых" опытах на животных или во время хирургических операций на мозге у человека.

Разрушение участков мозга. Повреждение или удаление части головного мозга для установления ее функций в обеспечении поведения — один из наиболее старых и распространенных методов изучения физиологических основ поведения. Метод разрушения мозга включает в себя разрушение, удаление и рассечение ткани, истощение нейрохимических веществ, в первую очередь медиаторов, а также временное функциональное выключение отдельных областей головного мозга и оценку влияния вышеперечисленных эффектов на поведение животных.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Спинной мозг.

Спинной мозг — заключен в позвоночный канал и окружен оболочками, между которыми циркулирует спинномозговая жидкость. Длина спинного мозга у взрослого человека составляет 43 см. На уровне большого затылочного отверстия он переходит в головной мозг, а заканчивается на уровне 2-3 поясничного позвонка. Масса – от 34 до 38 грамм, что составляет 2% от массы головного мозга. Построен симметрично.

Рис. 1 Строение сегментов спинного мозга

На передней поверхности посередине имеется глубокая передняя срединная щель, на задней поверхности —срединная борозда. По боковой поверхности каждой стороны проходят передняя и задняя латеральные борозды. Они соответствуют местам выхода передних и задних корешков спинномозговых нервов. Передний корешок состоит из отростков двигательных (моторных, эфферентных, центробежных) нервных клеток, расположенных в переднем роге спинного мозга.Задний корешок, чувствительный (афферентный, центростремительный), представлен совокупностью проникающих в спинной мозг центральных отростков чувствительных клеток, тела которых образуют спинномозговой узел (ганглий).

Вблизи спинного мозга в области межпозвоночного отверстия передние и задние корешки соединяются в единый спинномозговой нерв. Каждому сегменту спинного мозга соответствуют четыре корешка спинномозговых нервов или пара соответствующих нервов. Спинной мозг состоит из 31 пары сегментов (8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый). Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным.

В связи с особенностями развития спинной мозг у взрослых оканчивается на уровне I-II поясничного позвонка, то есть короче позвоночника. Поэтому корешки спинномозговых нервов грудных и особенно пояснично-крестцовых сегментов проходят до соответствующих межпозвоночных отверстий некоторое расстояние внутри позвоночного канала, формируя пучок —конский хвост.

Внутреннее строение спинного мозга. Центральное положение в спинном мозге занимает спинномозговой канал. Вокруг него располагается серое вещество. На поперечных срезах оно имеет характерную форму "бабочки". На протяжении спинного мозга форма бабочки несколько меняется. Серое вещество представлено преимущественно нервными клетками, которые формируют ядра, сливающиеся в передние, боковые и задние столбы серого вещества. На поперечных срезах выступы серого вещества часто называют рогами. Нейроны в сером веществе располагаются группами. В передних рогах расположены двигательные нейроны, в задних– чувствительные нейроны, а в боковых– нейроны, образующие центры симпатической нервной системы.Серое вещество спинного мозга образует сегментарный аппарат спинного мозга. Основная его функция – это осуществление врожденных рефлексов в ответ на раздражение (внутреннее или внешнее). Морфологической основой рефлекса является рефлекторная дуга, представленная цепью нейронов, обеспечивающих восприятие раздражения, трансформацию энергии раздражения в нервный импульс, проведение нервного импульса до нервных центров, обработку поступившей информации и peaлизацию ответной реакции. В зависимости от сложности рефлекторного акта различают простые и сложные рефлекторные дуги.

В простой рефлекторной дуге имеются 3 звена: афферентное, вставочное (ассоциативное) и эфферентное.

Рис. Схема рефлекторной дуги.

Снаружи серое вещество спинного мозга окружает белое вещество.

Черепно-мозговые нервы.

Головной мозг подразделяют на мозговой ствол, большой мозг и мозжечок. В стволе мозга располагаются структуры, относящиеся к сегментарному аппарату головного мозга, и подкорковые интеграционные центры. От ствола мозга, также как и от спинного мозга отходят нервы. Они получили название черепно-мозговых нервов.

Выделяют 12 пар черепно-мозговых нервов. В отличие от спинномозговых нервов, всегда смешанных (и чувствительные, и двигательные), черепно-мозговые нервы могут быть чувствительными, двигательными и смешанными.

Продолговатый мозг.

В головном мозге снизу вверх выделяют 5 отделов: продолговатый, задний, средний, промежуточный и конечный мозг.

Рис. 1. Сагиттальный разрез головного мозга.

1 – продолговатый мозг; 2 – задний мозг (мост и мозжечок); 3 – средний мозг; 4 – промежуточный мозг; 5 – конечный мозг.

Продолговатый мозг является непосредственным продолжением спинного мозга и имеет конусообразную форму. Он сочетает в себе черты строения спинного и головного мозга.

Средний мозг

По сравнению с другими отделами средний мозг имеет наименьшие размеры (длина ок.20мм) и является наиболее просто устроенным отделом головного мозга.

Ретикулярная формация.

Термин ретикулярная формация предложил в 1865 году немецкий ученый О. Дейтерс. Под этим термином Дейтерс понимал разбросанные в стволе головного мозга клетки, окруженные множеством волокон, идущих в различных направлениях. Именно сетевидное расположение волокон, связывающих между собой нервные клетки, послужило основой для предложенного названия.В настоящее время морфологами и физиологами накоплен богатый материал о строении и функциях ретикулярной формации. Установлено, что структурные элементы ретикулярной формации локализуются в целом ряде мозговых образований, начиная с промежуточной зоны шейных сегментов спинного мозга (VII пластина), и заканчивая некоторыми структурами промежуточного мозга (интраламинарными ядрами, таламическим ретикулярным ядром). Ретикулярная формация состоит из значительного числа нервных клеток (в ней содержится почти 9/10 клеток всего ствола мозга). Общие черты строения ретикулярных структур — наличие особых ретикулярных нейронов и отличительный характер связей.

Наряду с многочисленными отдельно лежащими нейронами, в ретикулярной формации головного мозга имеются ядра.

В ядрах ретикулярной формации находятся центры сна и бодрствования, и стимуляция тех или иных центров приводит или к наступлению сна, или к пробуждению. На этом основано применение снотворных. В ретикулярной формации расположены нейроны, реагирующие на болевые раздражения, идущие от мышц или внутренних органов. В ней также расположены специальные нейроны, которые обеспечивают быструю реакцию на внезапные, неопределенные сигналы.

Ретикулярная формация тесно связана с корой больших полушарий, благодаря этому формируется функциональная связь между внешними отделами ЦНС и стволом головного мозга. Она имеет также первостепенное значение для активации коры больших полушарий, для поддержания сознания.

Таким образом, между ретикулярной формацией и корой полушарий большого мозга имеется двусторонняя связь, которая обеспечивает саморегуляцию в деятельности нервной системы. От функционального состояния ретикулярной формации зависит тонус мускулатуры, работа внутренних органов, настроение, концентрация внимания, память и т. д. В целом ретикулярная формация создает и поддерживает условия для осуществления сложной рефлекторной деятельности с участием коры полушарий большого мозга.

Лимбическая система.

Лимбическая система — это совокупность структур головного мозга, обеспечивающих интегративную функцию внутренних органов и специализированных органов чувств, формирующих эмоциональную окраску поведенческих реакций и настроение. Термин лимбическая система впервые введён в 1952 году американским исследователем Паулем Мак-Лином. Limbus, круг, (отсюда название — лимбическая система), — это совокупность циркулярно расположенных структур.

Рис. Лимбическая система.

Эту систему иначе называют «висцеральным мозгом», так как структуры конечного мозга, входящие в состав лимбической системы, получают информацию от внутренних органов и участвуют в регуляции их деятельности.

Высшие центры коры полушарий большого мозга, относящиеся к лимбической системе, являются проекционными центрами различных видов специальной чувствительности: обонятельной, вкусовой, слуховой, зрительной и вестибулярной. Поэтому адекватное раздражение специализированных органов чувств создает положительный эмоциональный фон и хорошее настроение.

Гиппокамп является основной структурой лимбической системы, где происходит консолидация памяти – переход из краткосрочной в долговременную память. От гиппокампа часть волокон направляется к миндалевидному телу (стриарная система) и сосочковым телам, которые обеспечивают эмоциональную окраску поведенческих реакций.

Миндалины находятся в глубине височной доли мозга. Они обеспечивают оборонительное поведение, а также двигательные, вегетативные, эмоциональные реакции. При нарушении деятельности миндалины поведение резко меняется, утрачивается способность к поведению в социуме.

Лимбическая система имеет широкие связи со всеми областями головного мозга, ретикулярной формацией и гипоталамусом. Она обеспечивает высший корковый контроль над всеми вегетативными функциями (деятельностью сердечно-сосудистой, дыхательной, пищеварительной систем, обменом веществ и т.д.).

В гипоталамусе расположены центры, контролирующие деятельность внутренних органов, поэтому большинство поведенческих реакций и эмоций сопровождаются рядом вегетативных проявлений (покраснение или бледность кожи, повышенная потливость или сухость кожи, учащение частоты сердечных сокращений и дыхания, повышение величины артериального давления и т.д.). В гипоталамусе также вырабатываются статины и либерины, которые контролируют деятельность аденогипофиза, вырабатывающего тропные гормоны; последние оказывают влияние на все периферические железы внутренней секреции, гормоны которых, в свою очередь, регулируют функцию внутренних органов.

Таким образом, лимбическая система участвует в регуляции вегетативных функций, и оказывает влияние на смену сна и бодрствования. Совместно с гиппокампом она обеспечивает процессы запоминания и долговременную память. Лимбическая система является высшим подкорковым регулятором поведенческих реакций, связанных с удовлетворением первичных потребностей (еда, питье, половая потребность). Следовательно, лимбическая система является высшим интеграционным центром вегетативных, эмоциональных и поведенческих реакций.

Методы исследования мозга.

Современная анатомия располагает большим набором различных методов исследования строения нервной системы. Выбор метода зависит от задачи исследования.

Старейшим, но не потерявшим своего значения, является метод препарирования, рассечения, давший название науке название (anatome — рассекаю), он широко применяется при изучении внешнего строения и топографии образований ЦНС в учебном процессе. Не утратил своего значения и методвивисекции(вскрытие животных).

Анатомия изучает мозг не только на макро-, но и на микроскопическом уровне. Объекты, видимые при увеличении до 20—30 раз, могут быть описаны после их микроскопического препарирования(приготовления срезов). Этот метод может дополняться избирательной окраской изучаемых структур (нервов, глии). Потребность в специальных красителях возникла у исследователей, положивших начало применению микроскопической техники к изучению тканей растений и животных. Уже Левенгук в 1696 году использовал красители в некоторых из своих многообразных наблюдений. Однако широкое применение в гистологии получили красители только в работах Пуркинье (1838 – 1848 годы), его учеников и последователей, которые выявляли индиго и рядом других красящих веществ микроструктуры разнообразных клеток животных. В дальнейшем при развитии гистологической техники было предложено много красителей (метиленовый синий, тионин и др.), и основные успехи гистологии были связаны с изучением фиксированных окрашенных препаратов. Именно этот метод позволил детально изучать микроструктурную организацию мозговой ткани. Особое место занимаютлюминесцентные красители— производные акридина. Проникая в клетку, эти красители придают специфическую люминесценцию структурам, содержащим нуклеиновые кислоты. Широкое распространение получилметод хромсеребряной импрегнациинервной ткани, предложенный Гольджи. Он позволяет выделить нервную клетку со всеми отростками.

С развитием электронной микроскопии открылись возможности для выявления клеточной ультраструктуры и даже отдельных молекул.. Интересен метод сканирующей электронной микроскопии, дающий как бы объемное изображение объекта исследования как при малых, так и при больших увеличениях. Чуть больше десятка лет назад в исследованиях мозга стали применяться лазерные сканирующие конфокальные микроскопы, которые позволяют видеть не только в деталях структуру клеток, но и происходящие в них процессы, например, изменения концентрации ионов кальция, играющих в нервной ткани принципиальную роль.

Все упомянутые методы применимы при работе с трупом, которая остается в анатомии ведущим направлением или на переживающих препаратах. В то же время появляются методы, в равной мере применимые и для исследования трупа и для исследования живого человека. Эторентгенография(применение рентгеновских лучей) и томография. Современные методы томографии позволяют увидеть строение головного мозга человека прижизненно, что существенно облегчило процедуру исследования этого органа и понимания процессов, происходящих в нем.

Томография (томе — срез, греч.) основана на получении отображения срезов мозга с помощью специальных техник. Идея этого метода была предложена Дж. Родоном в 1927 году, который показал, что структуру объекта можно восстановить по совокупности его проекций, а сам объект может быть описан множеством своих проекций. Первый компьютерный томограф был создан в 1973 г. Авторы — А. Кормак и Г. Хаунсфилд — удостоены за его создание Нобелевской премии в области медицины и физиологии в 1979 г. Через год после этого начал работу первый томограф, в котором для построения изображения использовалось явление ядерно-магнитного резонанса. В конце 80-х годов появился позитронно-эмиссионный томограф. Эти методы позволяют видеть на экране изображение мозга, измерять объем его структур, определять число различных рецепторов и видеть, как возникают вспышки активности в разных областях. Методы помимо научных исследований нашли широкое применение в медицине для диагностики различных заболеваний.

Компьютерная томография— это современный метод, позволяющий визуализировать особенности строения мозга человека с помощью компьютера и рентгеновской установки. В установке, предназначенной для компьютерной томографии, источник рентгеновских лучей вращается в одной плоскости вокруг головы, а рентгеновские детекторы постоянно регистрируют интенсивность проходящего сквозь голову излучения. Компьютерные программы преобразуют полученные данные в рисунки срезов мозга различной глубины. Толщина подобных срезов может не превышать 5 мм. Для улучшения качества изображения перед исследованием пациенту вводят контрастное вещество. Особенно эффективна компьютерная томография для исследования повреждений мозга, например, вследствие инсульта, рассеянного склероза, опухолей.

Позитронно-эмиссионная томография(ПЭТ) позволяет оценить метаболическую активность в различных участках мозга. Испытуемый проглатывает радиоактивное соединение, позволяющее проследить изменения кровотока в том или ином отделе мозга, что косвенно указывает на уровень метаболической активности в нем. Таким радиоактивным соединением может быть 2-дезоксиглюкоза, имеющая одну из меток — радиоактивные изотопы углерода (С11), фтора (F18). кислорода (015). азота (N13). Радиоактивные изотопы излучают позитроны, которые, встречая в мозге электроны, уничтожаются (аннигилируют), излучая 2 гамма-луча, направляющиеся в противоположные стороны. В специальной камере монтируются детекторы гамма-лучей, собранные в кольца. В камеру помешается голова испытуемого, радиоактивные молекулы 2-дезоксиглюкозы фиксируются. Полученные данные обрабатываются компьютером, и на основе результатов воссоздается картина метаболически активных участков мозга.

При исследованиях методом магнитно-резонансной томографии головной мозг облучают электромагнитным полем, применяя для этого специальный магнит. Под действием магнитного поля диполи жидкостей мозга (например, молекулы воды) принимают его направление. После снятия внешнего магнитного поля диполи возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками. Затем этот сигнал обрабатывается с помощью компьютера и методами компьютерной графики отображается на экране монитора. Благодаря тому, что внешнее магнитное поле, создаваемое внешним магнитом, можно сделать плоским, таким полем как своеобразным «хирургическим ножом» можно «резать» головной мозг на отдельные слои. На экране монитора ученые наблюдают серию последовательных «срезов» головного мозга, не нанося ему никакого вреда. Этот метод позволяет исследовать, например, злокачественные образования головного мозга.

Методы исследования головного мозга человека конечно далеко не исчерпываются описанными выше и постоянно совершенствуются.

Добавить комментарий